Product Specification

Rev 4 • June 2016

Optimus.2 Eco 2.5" SAS SSD Product Line Generic

Document Number: 80-11-80008

Sandisk Western Digital Technologies, Inc. 951 SanDisk Drive Milpitas, CA 95035 Western Digital Technologies, Inc. is the seller of record and licensee in the Americas of SanDisk® products.

www.SanDisk.com

Legal Disclaimer

The Western Digital Corporation or its affiliate's general policy does not recommend the use of its products in life support applications wherein a failure or malfunction of the product may directly threaten life or injury. Without limitation to the foregoing, SanDiskshall not be liable for any loss, injury, or damage caused by use of its products in any of the following applications:

- Special applications such as military related equipment, nuclear reactor control, and aerospace.
- Control devices for transportation equipment including automotive vehicles, trains, ships, and traffic equipment.
- Safety systems for disaster prevention and crime prevention.
- Medical-related equipment (including medical measurement devices).

Accordingly, in any use of SanDisk products in life support systems or other applications where failure could cause damage, injury, or loss of life, the products should only be incorporated in systems designed with appropriate redundancy, fault tolerant, or back-up features. Per SanDisk Terms and Conditions of Sale, the user of SanDisk products in life support or other such applications assumes all risk of such use and agrees to indemnify, defend, and hold harmless Western Digital Corporation or its affiliates against all damages.

Security safeguards, by their nature, are capable of circumvention. SanDisk cannot, and does not, guarantee that data will not be accessed by unauthorized persons, and SanDisk disclaims any warranties to that effect to the fullest extent permitted by law.

this document and related material are for information use only and are subject to change without prior notice. Western Digital Corporation or its affiliates assumes no responsibility for any errors that may appear in this document or related material, nor for any damages or claims resulting from the furnishing, performance, or use of this document or related material. absent a written agreement signed by Western Digital Corporation or its affiliates or its authorized representative to the contrary, Western Digital Corporation or its affiliates explicitly disclaims any express and implied warranties and indemnities of any kind that may, or could, be associated with this document and related material, and any user of this document or related material agrees to such disclaimer as a precondition to receipt and usage hereof. Each user of this document expressly waives all guaranties and warranties of any kind associated with this document and/or related materials, whether expressed or implied, including without limitation, any implied warranty of merchantability or fitness for a particular purpose or infringement, together with any liability of Western Digital Corporation or its affiliates and its affiliates and its affiliates under any control, negligence, strict liability of Western Digital Corporation or its affiliates under any control, negligence, strict liability of Western Digital Corporation or its affiliates under any contract, profit or other incidental, punitive, indirect, special, or consequential damages, including without limitation physical injury or death, property damage, lost data, or costs of procurement of substitute goods, technology, or services.

This document and its contents, including diagrams, schematics, methodology, work product, and intellectual property rights described in, associated with, or implied by this document, are the sole and exclusive property of Western Digital Corporation or its affiliates and its applicable subsidiaries ("SanDisk"). No intellectual property license, express or implied, is granted by SanDisk associated with the document recipient's receipt, access and/or use of this document; SanDisk retains all rights hereto.

No work for hire, nor any form of joint ownership, is granted or implied by the document recipient's receipt, access and/ or use of this document.

Any work requested (or implied by the document recipient to be requested) to SanDisk associated with this document and/or its contents, shall be the sole and exclusive property of SanDisk, except to the extent, if any, expressly agreed otherwise by SanDisk in writing referencing this document.

This document, and SanDisk's communications to the user associated therewith, shall be treated as SanDisk's proprietary and confidential information, protected by the recipient as such, and used by the recipient only for the purpose authorized in writing by SanDisk. This document shall be covered as SanDisk's confidential information under all applicable nondisclosure agreements between the recipient and SanDisk.

No part of this document may be reproduced, transmitted, transcribed, stored in a retrievable manner, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written consent of an officer of Western Digital Corporation or its affiliates.

All parts of the SanDisk documentation are protected by copyright law and all rights are reserved. SanDisk and the SanDisk logo are registered trademarks of Western Digital Corporation or its affiliates, registered in the United States and other countries. Other brand names mentioned herein are for identification purposes only and may be the trademarks of their respective holder(s). Copyright 2016 Western Digital Corporation or its affiliates. All rights reserved.

Revision History

Date	Revision	Section(s)	Description
June 16	4	All	Western Digital corporate branding applied. No technical information changed.
November 2015	3	6.2, Table 19	Updated with new part numbers according to PCN-000353.
September 2015	2	1.5.1 and 1.5.2, Tables 5 and 6	Updated Weight (Typical) and added Weight (Max).
August 2015	1*	1.0, 1.3, 1.4.3, and 6.0	Updated sections to reflect new capacities (480 and 920 GBytes) and their respective drive writes per day (DWPD).
March 2014	A	All	Initialrelease.

* This document has been updated with the correct revision number to correlate with SanDisk's document storage system. Official documentation is assigned a numeric designation.

.

Table of Contents

Content

Ρ	a	q	e

1.1 General Description	5
1.2 Overview	
1.3 Features	
1.4 Unique Features	7
1.5 Operational Characteristics	8
1.5.1 Performance	8
1.5.2 Reliability	8
1.5.3 Power	8
1.6 Environmental Conditions	9
1.6.1 Physical Specifications	
1.6.2 15 mm Thickness	
2.1 Product Description.	
2.2 Functional Block Diagram	
2.3 Flash Management	
2.4 Endurance	
2.4.1 Aggregated Flash Management	
2.4.2 Advanced Signal Processing	13
2.5 Temperature Throttling	13
2.6 Sector Sizes	14
2.7 Mean Time Between Failures (MTBF)	14
3.1 Mechanical Specifications	
3.2 9.5 mm Thickness	
3.3 15 mm Thickness	
4.1 Electrical Specification	
4.2 Electrical Interface	
4.2.1 Interface Connector	
4.2.2 Signal Pinout Descriptions	
4.2.3 Power Pinout Descriptions	
4.2.4 Dual-Port	
4.3 Remote LED	
4.4 Thermal Sensor	
4.5 Absolute Maximum Ratings	19
4.6 Recommended Operating Conditions	19
4.7 DC Characteristics	19
5.1 SCSI Sense Code Key	
5.2 Sense Data	

Page

Table of Contents

Content

	5.3 SCSI Commands	24
	5.2.1 Supported SCSI Commands	24
	5.4 Security Erase Support	25
	5.5 Supported SMART Operations	25
	5.6 Log Pages	26
	5.7 SMART Attributes	27
	5.8 Warranty	27
6	.1 Part Number	.28
	6.2 Part Numbering Information	

1.1 General Description

1.2 Overview

The SanDisk Optimus.2 Eco solid state drive (SSD) ushers in a new era of flash storage, bringing together the industry's best combination of performance, capacity, endurance, and reliability, while using the most cost-effective flash available. This combination makes the Optimus.2 Eco SSD the ideal solution for a wide variety of enterprise applications, including the custom built hyper-scale architectures many organizations are developing on their own by combining best-in-class hardware and software.

OEMs and IT managers no longer have to compromise on performance, endurance, and reliability to obtain affordability. The Optimus.2 Eco SSD offers all four in a single package through a combination of the Guardian Technology Platform, SanDisk's unique and innovative intellectual property, and the use of the SanDisk 19 nm Multi-Level Cell (MLC) flash.

Available in capacities of 400 GBytes, 480 GBytes, 800 GBytes, 920 GBytes, 1.6 TBytes, and 1.9 TBytes. The Optimus.2 Eco SSD is designed for the mixed workloads common in enterprise applications and delivers the endurance required to last for the full five-year warranty. The Optimus.2 Eco SSDs also include a broad set of enterprise reliability, security, and data recovery features, giving OEMs and IT managers the confidence their data will not be compromised during any common data center occurrence.

The Optimus.2 Eco SSD is powered by the SanDisk proprietary Guardian Technology Platform, a comprehensive suite of innovative features comprised of FlashGuard[™] and EverGuard[™] technologies.

FlashGuard extends the native endurance of 19nm consumer-grade MLC flash based SSDs to deliver 1 to 7 drive writes per day (DWPD), depending on workload, for a period of five years. FlashGuard combines Aggregated Flash Management, which treats all flash elements as a single system, and Advanced Signal Processing, which dynamically adjusts flash parameters throughout the life of the SSD, to reliably extract significantly more life from the most cost-effective MLC flash, making it suitable for mixed workload enterprise applications.

DataGuard features full data path protection, safeguarding user data from corruption along all data paths in the SSD. DataGuard also protects the SSD against loss of data at the page and block levels using a unique feature called Flexible Redundant Array of Memory Elements (FRAME). It acts as a data recovery feature that enables the recovery of user data even after catastrophic events such as flash page or block failures.

EverGuard protects against loss of user data in the event of unexpected power interruptions using a third-generation backup power circuit design and high-reliability discrete capacitors.

SanDisk has built its foundation by providing proven technology featuring quality products to the most demanding Fortune 100 OEMs. SanDisk engineers its products to perform at the highest degree of reliability and compatibility while backing these products with outstanding services and expertise.

1.3 Features

- Type: 2.5" SAS SSD
- Interface: Dual-port Serial Attached SCSI-2
- Supported Transport Mode: Serial SCSI Protocol (SSP)
- Interface Transfer Rate: 6.0 Gbits/sec standard
- Capacities: 400 GBytes, 480 GBytes, 800 GBytes, 920 GBytes, 1.6 TBytes, and 1.9 TBytes
- Data Rates
 - Sequential Write:¹ Up to 500 MBytes per sec
 - Sequential Read:¹ Up to 500 MBytes per sec
 - Random Write:² Up to 35,000 I/Os per sec
 - Random Read.² Up to 95,000 I/Os per sec
- Access Time:³ 120 µsecs (typical)
- Operating Temperature:³ 0 °C to 70 °C (internal)
- Compliance
 - RoHS
 - Halogen-free
- Warranty: 5 Years

1. Based on 128 KByte transfers.

2. Based on 4 KByte transfers.

3. As measured by the drive thermal sensor.

1.4 Unique Features

- Drive-specific SMART Attributes
- Maximum 5% Performance Degradation Throughout Warrantied Life
- Full Drive Writes Per Day (DWPD) 1 to 7 depending upon capacity
- FlashGuard Technology
 - Extension of the Native Endurance of Commercial MLC Flash
 - Aggregated Flash Management
 - Advanced Signal Processing
 - Enhanced Error Correction
- DataGuard Technology
 - Protection Against Data Corruption and Loss
 - Full Data Path Protection
 - FRAME Technology
 - EverGuard Technology
 - Data Protection in the Event of Unanticipated Power Outages
 - High-reliability Backup Power Circuitry
- External LED Activity Support
- Temperature Throttling
- Variable Sector Sizes (512 and 520 Bytes)

1.5 Operational Characteristics

All listed values are typical unless otherwise stated.

1.4.1 Performance

Table 1: Performance Characteristics

Item	Optimus.2 EcoPerformance
Sequential Read (Maximum)	Up to 500 MBytes/sec ⁴
Sequential Write(Maximum)	Up to 500 MBytes/sec ⁴
Random Read I/Os Per Second (Maximum)	Up to 95,000 ⁵
Random Write I/Os Per Second (Maximum)	Up to 35,000 ⁵
AccessTime	120 µsec (typical) ⁵

1.4.2 Reliability

Table 2: Reliability Characteristics

Item	Value
Data Reliability	< 1 unrecovered error in 10 ¹⁷ bits read ⁶
DataRetention	3 months @ 100% P/E cycles ⁷
Endurance (400 GBytes, 800 GBytes, 1.6 TBytes)	3 to 7 DWPD (Random/Sequential Workload) for 5 years
Endurance (480 GBytes, 920 GBytes, 1.9 TBytes)	1 DWPD (Random/Sequential Workload) for 5 years

1.4.3 Power

Table 3: PowerRequirements

Parameter	Value(Typical)	Value (Max)	Unit
Read	4.57	7.24	w
Write	6.21	9.00	w
Idle	3.44	3.70	w

4. Based on 128 KByte transfers.

- 5. Random performance values are based on 4 KByte transfers.
- 6. The JEDEC 64.8 specification requires 1 in 10¹⁶ for enterprise-class SSDs.
- 7. Three-month data retention is based on non-operational storage at less than 40°C.

1.5 Environmental Conditions

Table 4: Environment Tests

Test	Condition	Limits
	Operating	-1,000 feet to 18,000feet
Altitude	Shipping	-0 feet to 40,000feet
	Storage	-0 feet to 40,000feet
	Operating	Temperature: 0 °C to + 70 °C (internal) Humidity: 5% to 95% non-condensing, relative humidity
		NOTE: Warranty coverage is voided for drives that record temperatures in excess of 70 °C.
Temperature and Humidity		Temperature: -40 °C to + 85 °C Humidity: 5% to 95% non-condensing, relative humidity
	Shipping/Storage	NOTE: Non-operational exposure to temperatures in excess of 40 °C for periods exceeding three months should be avoided. The three-month EOL data retention specification requires storage temperatures do not exceed 40 °C. If necessary, contact SanDisk for further information.
	Operating	5.0 - 400 Hz sine, 1.0 <i>g</i> peak 5 - 300 Hz and 0.5 <i>g</i> peak 300 - 400 Hz for each [x,y,z] axis; sweep 1.0 <i>g</i> peak 5 - 300 Hz and 0.5 <i>g</i> peak 300 - 400 Hz; sweep rate is 0.5 Hz sec @ 26 min per axis
Vibration - SweptSine	Non-operating	2.0 - 200 Hz sine, 0.5 <i>g</i> peak 2 - 5 Hz and 3.0 <i>g</i> peak 5 - 200 Hz for each [x,y,z] axis; sweep 0.4 <i>g</i> peak 2.0 - 2.3 Hz, 0.5 <i>g</i> peak 2.3 - 5.0 Hz, 2.42 <i>g</i> peak 5.0 - 5.6 Hz, and 3.0 <i>g</i> peak 5.6 - 200 Hz; sweep rate is 0.4 decades per min @ 10 min per axis
		15 g @ 11.0 msec
	Operating	400 <i>g</i> @ 2.0 msec
		1000 <i>g</i> @ 0.5 msec
Shock		35 <i>g</i> @ 20.0 msec
	Non-operating	80 <i>g</i> @ 11.0 msec
		150 <i>g</i> @ 10.0msec
		500 <i>g</i> @ 2.0 msec
Common Mode Noise		220 mV, 10 KHz - 10 MHz
V _{cc} Ripple Noise		50 mV, 10 KHz - 50 KHz 100 mV, 50 KHz - 10 MHz

1.5.1 Physical Specifications

Table 5: 9.5 mm Physical Characteristics

Parameter	Value
Length	99.80 <u>+</u> 0.25 mm
Width	69.60 <u>+</u> 0.25 mm
Height (Mounted)	9.24 <u>+</u> 0.25 mm
Weight(Typical)	122 g (4.3 oz)
Weight (Max)	125 g (4.4 oz)

1.5.2 15 mm Thickness

Table 6: 15 mm PhysicalCharacteristics

Parameter	Value
Length	100.20 <u>+</u> 0.25 mm
Width	69.85 <u>+</u> 0.25 mm
Height (Mounted)	14.75 <u>+</u> 0.25 mm
Weight(Typical)	150 g (5.3 oz)
Weight (Max)	154 g (5.4 oz)

2.1 Product Description

2.2 Functional Block Diagram

The Optimus.2 Eco 2.5" SAS SSDs contain a NAND flash controller that provides a 6 Gbits/sec SAS interface to the host system. Parallel access to multiple flash sites allows overlapped, multi-block access to complete data transfer requests rapidly. A thermal sensor provides input to the controller regarding over-temperature conditions. EverGuard Technology ensures data integrity during powerfail scenarios.

2.3 Flash Management

The Optimus.2 Eco 2.5" SAS SSDs support the following techniques for enhanced flash management:

- Static Wear Leveling: This feature eliminates overstressing flash media by spreading the data writes across all flash physical address space, including logical areas that are not written by the user.
- ECC: The Optimus.2 Eco 2.5" SAS SSDs utilize advanced two-level BCH code and a Flexible Redundant Array of Memory Elements (FRAME) data recovery algorithm. The drive activates this second tier of error correction if the ECC engine is unable to correct the data located in failed NAND pages.
- Bad-block Management: This feature tracks all manufacturing and run-time bad blocks of flash media and replaces them with new ones from the spare pool.
- Data Retention Management: As flash is used over the life of the drive, data retention capability declines. The Optimus.2 Eco 2.5" SAS SSDs incorporate multiple data-retention management techniques to ensure the highest data reliability and integrity, even toward the end of the drive life.
- Minimal Write Amplification: Write amplification is defined as the ratio of total data written to the flash compared to the total data written by the host. This ratio varies continually as a function of workload. The Optimus.2 Eco 2.5" SAS controller utilizes write optimization, effective wear leveling, intelligent bad block management, and efficient recycling to deliver an unprecedented, low write amplification factor. This translates directly to higher and more stable performance over a longer life.

2.4 Endurance

The Optimus.2 Eco 2.5" SAS SSDs provide the innovative FlashGuard technology feature to extract higher endurance from MLC flash. FlashGuard incorporates two important technology breakthroughs in the area of flash and SSD system management:

- Aggregated Flash Management
- Advanced Signal Processing

2.3.1 Aggregated Flash Management

SanDisk's Aggregated Flash Management technology prolongs the life of SSDs by treating all flash elements in the SSD as a system instead of as a collection of discrete elements. Aggregating the management of the flash over multiple pages within a block and over multiple blocks within the SSD reduces the limitations imposed at the page and block levels, thus extending the life of the drive.

FlashGuard treats each flash cell individually, thereby maximizing the effects of stronger flash elements (i.e., those that exhibit higher performance capability) while minimizing the effects of weaker elements. The capability of FlashGuard to distinguish between, and take advantage of, flash elements at the cellular level extends the endurance of the drive. See page <u>13</u> for an illustration.

Figure 2: Optimus.2 Eco 2.5" SAS Product Family Increased SSD Endurance

2.3.2 Advanced Signal Processing

The controller's Advanced Signal Processing technology is used to periodically monitor the flash and collect detailed statistics of its performance. This information is used to dynamically adjust the flash operating parameters to attain maximum endurance from the drive throughout its operational life. To further extend the life of the drive, FlashGuard incorporates a proprietary enhanced error correction technology that corrects more data errors than is possible with standard error correction schemes.

2.4 Temperature Throttling

The Optimus.2 Eco 2.5" SAS SSDs support temperature throttling to protect the drive from premature failure. With this feature, the drive throttles the write performance based on a pre-configured temperature level of 65 °C.

When the critical temperature (65 °C) is reached, the drive returns a sense key of 01/0B to indicate a threshold was exceeded and records the data to the Informational Exceptions log page (2Fh). Write performance remains throttled until the temperature falls below 65 °C. See page $\frac{26}{26}$ for more information about log pages. If the drive reaches 70 °C, a SMART trip will occur, voiding the warranty.

NOTE:	The throttling level varies according to workload.	
-------	--	--

2.5 Sector Sizes

Because the Optimus.2 Eco SSD supports variable sector sizes, the formatted number of blocks differs depending on the sector size. By default, the block size is set to 512 bytes, but the drive can be configured for 520-byte blocks.

2.6 Mean Time Between Failures (MTBF)

The MTBF statistic for all Optimus. 2 Eco SSDs is calculated based on Telcordia SR-332 Issue 3, vendor data, test data, and field-based estimates. **Table 7: MTBF Value**

Drive Capacity	MTBF (Hours)
All	2,500,000

The Optimus. 2 Eco 2.5" SAS SSDs meet all regulatory, safety, and electromagnetic compatibility (EMC) standards listed in the following table: **Table 8: Regulatory Compliance**

Category	Region	Compliance/Agency	Standard	AdditionalInformation
	USA	UL	UL 60950-1, Second Edition	UL File No.E351027
Safety	Canada	CSA	CSAC22.2No.60950-1-07, Second Edition	CSACertificate
Salety	European Union	EU Directive 2006/95/EC (LVD)	EN 60950-1:2006/A11	TÜV Bauart Certificate
	International	UL	IEC 60950-1:2005,Second Edition	UL CB Certificate
	USA	FCC	FCC Part 15 Class B	FCC Declaration of Conformity
	Canada	Industry Canada	ICES-003 Class B	IC Declaration of Conformity
EMC	European Union	EU Directive 2004/108/EC (EMC)	EN 55022:2010 Class B	CE Declaration of Conformity
ENIC	Korea	КСС	KN22:2009 Class B, KN24:2009	KCCCertificate
	Taiwan	BSMI	CNS 13438 (2006) Class B	BSMI Declaration of Conformity
	Australia	АСМА	AS/NZSCISPR22:2006, Class B	C-Tick Declaration of Conformity
RoHS	European Union		EU Directive 2011/65/EU (RoHS)	CE Declaration of Conformity

3.1 Mechanical Specifications

3.2 9.5 mm Thickness

Figure 3: Optimus.2 Eco 2.5" SAS Drive Dimensions (in mm)⁸

The warranty is voided if the label is removed.

3.3 15 mm Thickness

4.1 Electrical Specification

4.2 Electrical Interface

The Optimus.2 Eco 2.5" SAS drive is compliant with the SAS-2, 6.0 Gbits/sec standard.

4.2.1 Interface Connector

The SAS connector on the Optimus.2 Eco 2.5" SAS drives includes two signal bays: a primary signal segment (S1 to S7), and a secondary signal segment (S8 to S14). The power bay is a standard 15-pin SAS power connector. The SAS connector can support both cabled and backplane plug-in connections.

4.2.2 Signal Pinout Descriptions

Pin	Backplane	SAS DrivePlug
S1	GND	GND
S2	Transmit primary differential signal out +	Receive primary differential pair signal in+
S3	Transmit primary differential signal out-	Receive primary differential pair signal in-
S4	GND	GND
S5	Receive primary differential pair signal in -	Transmit primary differential pair signal out-
S6	Receive primary differential pair signal in +	Transmit primary differential pair signal out+
S7	GND	GND
S8	GND	GND
\$9	Transmit secondary differential signal out+	Receive secondary differential signal in +
\$10	Transmit secondary differential signal out-	Receive secondary differential signal in-
S11	GND	GND
S12	Receive secondary differential signal in-	Transmit secondary differential signal out-
\$13	Receive secondary differential signal in+	Transmit secondary differential signal out+
S14	GND	GND

Table 9: Signal Pinout Descriptions

4.2.3 Power Pinout Descriptions

Table 10: Power PinoutDescriptions

Pin	Signal Name	In/Out	Signal Description
P1	V3.3	N/A	3.3 V power (notused)
Р2	V3.3	N/A	3.3 V power (notused)
Р3	V3.3	N/A	3.3 V power (notused)
Р4	GND	In	1 st mate
Р5	GND	In	2 nd mate
Р6	GND	In	2 nd mate
Р7	V5	In	5 V power, pre-charged, 2 nd mate
Р8	V5	In	5 Vpower
Р9	V5	In	5 Vpower
P10	GND	In	2 nd mate
P11	Reserved	In/Out	Ready and fault indicator
P12	GND	In	1 st mate
P13	V12	N/A	12 V power
P14	V12	N/A	12 V power
P15	V12	N/A	12 V power

4.2.4 Dual-Port

As shown on page <u>17</u>, the Optimus.2 Eco 2.5" SAS SSDs support dual ports. Although each of these has individual SAS addresses, they may be connected to the same or different SCSI domains. In addition, each port is independently clocked with support for 6 Gbits/sec link rates.

4.3 Remote LED

In compliance with the SAS specification, pin P11 on the 15-pin power connector supports a remote LED. Because the signal is not suitable for directly driving an LED, a circuit external to the device must first buffer the signal. When connected, the remote LED indicates both ready and fault conditions. See the following table for the blink rates associated with the remote LED:.

Table 11: Activity LED Blink Rates

Command	Blink Rate
Read/WriteOperations	Proportional to the I/Orate
Format	2 times per second
Send Diagnostics ForegroundSelf-test	2 times per second
Send Diagnostics Background Self-test	2 times per second

4.4 Thermal Sensor

Optimus.2 Eco 2.5" SAS SSDs have a thermal sensor on the printed circuit board. The drive stores the highest and lowest temperature readings in the drive logs. Measured is the temperature of the printed circuit board, not the drive case. See page <u>26</u> for more information about reading log pages.

4.5 Absolute Maximum Ratings

The listed values apply to all Optimus.2 Eco drives.

Table 12: Voltage and Storage Temperature

Symbol	Parameter	Ratings (Max)	Unit	
V	5.0+10%	5.50	V	
V _{IN}	12.0 + 5%	12.60	v	
1	Active Current (5V) ⁸	1.20	А	
ACTIVE	Active Current (12V) ⁸	0.50	~	
T _{STG}	StorageTemperature	-40 to +85	°C	

4.6 Recommended Operating Conditions

The listed values apply to all Optimus.2 Ecodrives.

Table 13: Recommended OperatingConditions

Symbol	Parameter	Ratings	Unit
	5 V SupplyVoltage	5.0 +10%, -5%	V
V _{IN}	12 V SupplyVoltage	12.0 <u>+</u> 5%	· · ·
T _A	Operating Temperature(Internal) ⁹	0 to +70	°C

4.7 DC Characteristics

Table 14: DC Characteristics¹⁰

Symbol	Parameter	Average	Peak	Unit	Condition
1	Current During Read	0.46	0.72	А	$V_{IN} = 5 V$
READ	Current During Read	0.19	0.30	А	V _{IN} = 12 V
1	Current DuringWrite	0.62	1.20	А	V _{IN} =5 V
^I WRITE	unent During write	0.26	0.50	А	V _{IN} = 12 V
	Idle Current	0.34	0.37	А	V _{IN} = 5 V
IDLE	laie current	0.14	0.15	А	V _{IN} = 12 V

8. These values represent the maximum current that could be drawn on either power rail, independent of the other. In operation, maximum 5 V current draw does not occur synchronously with maximum 12 V current draw. These values should not be summed to estimate a maximum drive power consumption; this value must be determined by direct measurement only.

9. As measured by the thermal sensor.

10. Current values presented for 12 V and 5 V are independent measurements and cannot be combined to compute overall drive power consumption. Peak draw is transient, typically lasting < 100 usec.

5.1 SCSI Sense Code Key

SanDisk Optimus SAS drives use sense data to indicate the type of error that occurred if the drive fails to execute a command. If the drive returns a CHECK CONDITION, issue the Request Sense command to view the sense data. The drive will respond with bytes of information containing the sense key, additional sense key code (ASC), and additional sense code qualifier (ASCQ).

5.2 Sense Data

See the following table for a list of the supported sensedata:

Table 15: Sense Data

Sense Key	ASC	ASCQ	FRU	Condition Description
NO SENSE (00h)			
00	00	00	00	GOOD response
00	00	EB	00	RETRANSMIT response
00	00	EE	00	RETRANSMIT GOOD response
RECOVEREI	DERROR(0	1h)		
01	OB	00	00	Failure predictionwarning
01	0B	01	BE	Failure prediction threshold exceeded drive temperature warning
01	0C	01	00	Write error recovered with auto reallocation
01	11	14	00	Marked recovered by applicationclient
01	15	01	00	Mechanical positioning errorrecovered
01	17	00	00	Recovered data with no error correction applied
01	17	01	00	Recovered data withretries
01	1C	00	00	Recovered error defect list not found
01	5D	00	00	Failure prediction threshold exceeded
01	5D	00	01	Failure prediction threshold exceeded Raw Read Error Rate
01	5D	00	02	Failure prediction threshold exceeded Flash ROM Check
01	5D	00	05	Failure prediction threshold exceeded Reallocated Block Count
01	5D	00	09	Failure prediction threshold exceeded Power On Hours Count
01	5D	00	0C	Failure prediction threshold exceeded Power Cycle Count
01	5D	00	0D	Failure prediction threshold exceeded ECC Rate
01	5D	00	20	Failure prediction threshold exceeded Write Amplification
01	5D	00	AA	Failure prediction threshold exceeded Percent Unused Reserved Block
01	5D	00	B1	Failure prediction threshold exceeded Percent Drive Life Remaining
01	5D	00	B3	Failure prediction threshold exceeded Percent Used Reserve Block Count
01	5D	00	B4	Failure prediction threshold exceeded Percent Unused Reserve Block Count
01	5D	00	B5	Failure prediction threshold exceeded Program Fail Count
01	5D	00	B6	Failure prediction threshold exceeded Erase Fail Count
01	5D	00	C2	Failure prediction threshold exceeded Drive Temperature
01	5D	00	C3	Failure prediction threshold exceeded Uncorrectable Error Count
01	5D	00	C6	Failure prediction threshold exceeded Offline Scan Uncorrectable Sector Count
01	5D	00	С7	Failure prediction threshold exceeded CRC Error Count
01	5D	00	С9	Failure prediction threshold exceeded Volatile Memory Backup Source Failure
01	5D	00	CA	Failure prediction threshold exceeded Exception Mode Status

This document or item is part of a SanDisk-developed design for a standard SanDisk product, and is not custom material. © 2015 SanDisk Corporation.

SanDisk

Table 15: Sense Data(Continued)

Sense Key	ASC	ASCQ	FRU	Condition Description		
	5D	00	E9	Failure prediction threshold exceeded Number of Write Count		
01	5D	00	F0	Failure prediction threshold exceeded Link Error Event		
01	5D	00	F5	Failure prediction threshold exceeded Percent Drive Life Used		
NOT READY	NOT READY(02h)					
02	04	00	00	LUN not ready; cause not reportable		
02	04	01	00	LUN not ready; becoming ready		
02	04	02	00	LUN not ready; initialization command required		
02	04	04	00	LUN not ready; format in progress		
02	04	09	00	LUN not ready; self-test in progress		
02	04	11	00	LUN not ready; notify required		
02	04	1B	00	LUN not ready; sanitize in progress		
02	04	DB	00	LUN not ready; diagnostics running		
MEDIUM ER	ROR (03h)					
03	0C	00	00	Write error		
03	0C	14	00	Write error; RMW marked bad by applicationclient		
03	11	00	00	Unrecovered readerror		
03	11	14	00	Marked bad by application client		
03	31	00	00	Formatcorrupt		
03	32	00	00	No defect spare locationavailable		
03	32	01	00	Defect list updatefailure		
HARDWARE	ERROR(04	h)				
04	3E	03	00	Logical unit failed self-test		
04	3E	04	00	Logical unit unable to update self-test result log		
04	42	00	00	Power on or self-test failure		
04	44	00	00	Internal targetfailure		
04	BA	DA	00	Degraded media state L2P tableCZ1		
ILLEGAL REG	QUEST (05ł	1)				
05	0E	01	00	Information unit tooshort		
05	0E	02	00	Information unit toolong		
05	1A	00	00	Parameter list lengtherror		
05	20	00	00	Invalid command operationcode		
05	21	00	00	LBA out of range		
05	24	00	00	Invalid field inCDB		
05	25	00	00	Logical unit not supported		
05	26	00	00	Invalid field parameter length		
05	26	01	00	Parameter notsupported		
05	26	02	00	Parameter valueinvalid		
05	26	04	00	Invalid release of persistent reservation		
05	26	80	00	Parametersfull		
0.5	26	00	00			
	26 2C	09	00	Previous reservation conflict status		

Table 15: Sense Data(Continued)

Sense Key	ASC	ASCQ	FRU	Condition Description
05	55	02	00	Insufficient reservation resources
05	55	04	00	Insufficient registration resources
05	74	00	00	Securityerror
05	74	01	00	Unable to decrypt data
05	74	02	00	Unencrypted data encountered whiledecrypting
05	74	03	00	Incorrect data encryptionkey
05	74	04	00	Cryptographic integrity validation failed
05	74	05	00	Error decrypting data
05	74	06	00	Unknown signature verificationkey
05	74	07	00	Encryption parameters notuseable
05	74	08	00	Digital signature validation failure
05	74	09	00	Encryption mode mismatch on read
05	74	0A	00	Encrypted block not raw read enabled
05	74	OB	00	Incorrect encryptionparameters
05	74	0C	00	Unable to decrypt parameterlist
05	74	0D	00	Encryption algorithmdisabled
05	74	10	00	SA creation parameter value invalid
05	74	11	00	SA creation parameter valuerejected
05	74	12	00	Invalid SA usage
05	74	21	00	Data encryption configuration prevented
05	74	30	00	SA creation parameter notsupported
05	74	40	00	Authentication failed
05	74	61	00	External data encryption key manager access error
05	74	62	00	External data encryption key manager error
05	74	63	00	External data encryption key not found
05	74	64	00	External data encryption request not authorized
05	74	6E	00	External data encryption control timeout
05	74	6F	00	External data encryption control error
05	74	71	00	Logical unit access not authorized
05	74	79	00	Security conflict in translated device
UNIT ATTEN	NTION (06h)			
06	00	00	00	Unit attentionpending
06	29	00	00	Power on reset or bus device reset occurred
06	29	01	00	Power on resetoccurred
06	29	02	00	Hard resetoccurred
06	29	03	00	LUN reset occurred
06	29	07	00	IT Nexus loss
06	2A	00	00	Parameterschanged
06	2A	01	00	Mode parameterschanged
06	2A	02	00	Log parameters changed
06	2A	03	00	Reservations pre-empted

Table 15: Sense Data(Continued)

Sense Key	ASC	ASCQ	FRU	Condition Description
	2A	04	00	Reservations released
06	2A	05	00	Registrations pre-empted
06	2F	00	00	Commands cleared by another initiator
06	2F	01	00	Commands cleared by power lossnotification
06	3F	00	00	Target operation conditions have changed
06	3F	01	00	Microcode has beenchanged
06	3F	03	00	Inquiry data has changed
06	4B	04	00	NAK received UA
DATAPROTI	ECT (07h)			
07	27	00	00	Write protected
ABORTED (0) DBh)			
0B	00	00	00	Aborted command
0B	10	01	00	Logical block guard check failed
0B	10	02	00	Logical block application tag check failed
0B	10	03	00	Logical block reference tag check failed
0B	3F	01	00	Aborted download inprogress
0B	44	00	00	Command time limitexceeded
0B	45	00	00	Select/Reselect failure
0B	47	00	00	SCSI parityerror
0B	47	01	00	Data phase CRC errordetected
0B	47	80	00	Double guard page allocation detected
0B	47	81	00	Data MPECC errordetected
0B	47	82	00	Data BCRC errordetected
0B	47	83	00	Data HLBA error detected
0B	47	84	00	Unexpected internalcheck
0B	4B	02	00	Too much write data
0B	4B	04	00	NAKreceived
0B	4B	05	00	Data offseterror
0B	4B	06	00	Initiator responsetimeout
OB	4B	07	00	Connection lost
OB	4E	00	00	Overlapped commandsattempted
OB	55	03	00	Aborted insufficientresources
MISCOMPA	RE(0Eh)			
OE	1D	00	00	Miscompare during verifyoperation
OE	1D	01	00	Miscompare verify of unmapped LBA

5.3 SCSI Commands

5.2.1 Supported SCSI Commands

The Optimus.2 Eco 2.5" SAS SSDs support the standard commands listed in the following table. For more detailed descriptions of the commands, please refer to the specification defined for the command.

Table 16: Supported SCSI Commands

Command Name	Op Code/Service Action(Hex)	Standard
FormatUnit	04	SCSI BlockCommands-3
Inquiry	12	SCSI Primary Commands-4
Log Select (10Bytes)	4C	SCSI PrimaryCommands-4
Log Sense (10Bytes)	4D	SCSI PrimaryCommands-4
Mode Select (6 Bytes)	15	SCSI PrimaryCommands-4
Mode Select (10Bytes)	55	SCSI PrimaryCommands-4
Mode Sense (6 Bytes)	1A	SCSI PrimaryCommands-4
Mode Sense (10Bytes)	5A	SCSI PrimaryCommands-4
Persistent Reserve In	5E	SCSI BlockCommands-3
Persistent Reserve Out	5F	SCSI BlockCommands-3
Read (6 Bytes)	08	SCSI BlockCommands-3
Read (10Bytes)	28	SCSI BlockCommands-3
Read (12Bytes)	A8	SCSI BlockCommands-3
Read (16Bytes)	88	SCSI BlockCommands-3
Read (32 Bytes)	7F/0009	SCSI BlockCommands-3
Read Buffer	3C	SCSI BlockCommands-3
Read Capacity (10Bytes)	25	SCSI BlockCommands-3
Read Capacity (16 Bytes)	9E/10	SCSI BlockCommands-3
Read Defect Data (10Bytes)	37	SCSI BlockCommands-3
Read Defect Data (12Bytes)	3E	SCSI BlockCommands-3
Read Long (10Bytes)	1B	SCSI PrimaryCommands-4
ReassignBlocks	07	SCSI BlockCommands-3
Receive Diagnostics Results	1C	SCSI BlockCommands-3
ReportLUNS	A0	SCSI Primary Commands-4
Report Supported Opcodes	A3	SCSI Primary Commands-4
Request Sense	03	SCSI PrimaryCommands-4
Send Diagnostic	1D	SCSI Primary Commands-4
Start/Stop Unit	1B	SCSI Primary Commands-4
Synchronize Cache (10Bytes)	35	SCSI PrimaryCommands-4
Test Unit Ready	00	SCSI Primary Commands-4
Unmap	42	SCSI Primary Commands-4
Verify (10Bytes)	2F	SCSI BlockCommands-3
Verify (12Bytes)	AF	SCSI BlockCommands-3
Verify (16Bytes)	8F	SCSI BlockCommands-3
Verify (32Bytes)	7F/000A	SCSI BlockCommands-3
Write (6Bytes)	0A	SCSI BlockCommands-3

Table 16: Supported SCSI Commands (Continued)

Command Name	Op Code/Service Action(Hex)	Standard	
Write (10Bytes)	2A	SCSI BlockCommands-3	
Write (12Bytes)	AA	SCSI BlockCommands-3	
Write (16Bytes)	8A	SCSI BlockCommands-3	
Write (32Bytes)	7F/000B	SCSI BlockCommands-3	
Write Buffer	3В	SCSI Primary Commands-4	
Write Long (10Bytes)	3F	SCSI PrimaryCommands-4	
Write Long (16Bytes)	9F	SCSI PrimaryCommands-4	
Write Same (10Bytes)	41	SCSI BlockCommands-3	
Write Same (16Bytes)	93	SCSI BlockCommands-3	
Write Same (32Bytes)	7F/000D	SCSI BlockCommands-3	
Write and Verify (10Bytes)	2E	SCSI BlockCommands-3	
Write and Verify (12Bytes)	AE	SCSI BlockCommands-3	
Write and Verify (16Bytes)	8E	SCSI BlockCommands-3	
Write and Verify (32 Bytes)	7F/000C	SCSI BlockCommands-3	

5.4 Security Erase Support

The Optimus.2 Eco 2.5" SAS drives support a normal secure erase function through the Format Unit command. To erase the drive, set the INITIALIZATION PATTERN TYPE field in the Initialization Pattern Description to 81h, and set the SECURITY INITIALIZE bit to 1. For more information about the Format Unit command, see the SCSI Block Commands-3 specification.

5.5 Supported SMART Operations

Self-Monitoring Analysis and Reporting Technology (SMART) attributes provide diagnostic information regarding drive operation. SMART alerts the host to potential drive problems, allowing system operators to assess the situation and backup data prior to an operational failure.

With SMART the Optimus.2 Eco SAS SSDs continually monitor a number of key internal operating parameters to identify performance changes which could be a sign of impending drive failure. When the drive detects such a condition, the drive alerts the host system to a reduction in drive performance or reliability. The drive supports information exception reporting functionality as defined in the SCSI standard Informational Exceptions log page (2Fh). The DEXCPT bit is used to enable/disable SMART operations, and the PERF bit is used to defer SMART Operations. Both of these bits are also found in the standard Informational Exceptions logpage.

The Optimus.2 Eco SAS SMART subsystem also supports a thermal monitoring and warning feature. This system generates an 01/0B sense code when the drive exceeds the factory-configured temperature of 65 °C. To determine the drive temperature, use the SSD Event log page (3Ch). See the table in the following section for more information about supported log pages.

5.6 Log Pages

The Optimus.2 Eco 2.5" SAS SSDs support the log pages listed in the following table. To retrieve these log pages, use the Log Sense SCSI command with the appropriate pagecode.

Table 17: Supported Log Pages

Log Page	Page Code(Hex)	Description	
Supported Pages	00	Lists the supported log pages.	
Write ErrorCounter	02	Returns the total number of uncorrectable writeerrors.	
Read ErrorCounter	03	Returns the total number of uncorrectable readerrors.	
Verify ErrorCounter	05	Returns the total number of uncorrectable verifyerrors.	
Non-Medium ErrorCounter	06	Indicates the number of non-medium errors thatoccurred.	
Time	07	Provides the lifetime power in hours/seconds and the number of power cycles.	
Temperature	0D	Specifies the highest temperature logged from the on-board sensor.	
Start/Stop CycleCounter	OE	Indicates the number of start/stop cycles thatoccurred.	
Application Client	OF	Provides a location for application clients to store information.	
Self-Test Results	10	Returns the results of the driveself-tests.	
Solid State Media	11	Indicates parameters that are specific to SCSI target devices that contain solid state media.	
Background ScanResults	15	Returns the results of a background scan, which includes power-on minutes, number of scans performed, etc.	
Non-VolatileCache	17	Reports that non-volatile cache is present and for how long the data remains non-volatile.	
Protocol-SpecificPort	18	Returns PHY-specific data for each of the two SAS ports.	
General Statistics and Performance	19	Provides performance and general statistical data, such as the number of read commands received, number of blocks transmitted, etc.	
CriticalFailure	28	Returns a log of critical events, including the time the event occurred and the type of event.	
Informational Exceptions	2F	Returns information on specific exceptions related to predictive failure conditions (SMART).	
EraseCounts	31	Returns the highest number of erase cycles on a single flash channel.	
Erase Errors	33	Returns the total number of uncorrectable errors and defects (bothmanufacturer- detected and grown).	
SMART Data	34	Returns the supported attributes and their respective minimum, maximum, current, and threshold values.	
SAS ErrorStatistics	36	Returns the total number of low-level SAS port errors.	
SSD Event	3C	Provides a log of critical and informational events to identify and diagnose problems encountered by thedrive.	

5.7 SMART Attributes

The following table describes the supported SMART attributes returned in log page 34h. All attributes have a normalized value range of 0 to 255 percent to failure. If a value is 100 or more, a SMART trip is reported. It is important to note that most SMART attributes values are maintained across power cycles (that is, they arenon-volatile).

Table 18: Supported SMART Attributes

Attribute ID(Dec)) Name	Indicates		
1	Raw Read Error Rate	The raw error related to ECC errors. Correctable and uncorrectable data fail correction errors are included in the error event count.		
		Indicates that the firmware image in flash may have a checksum error.		
2	Flash ROM Check	0 = no errors		
		1 = at least one image failed the checksumtest		
5	Retired BlockCount	The total number of retired blocks. This attribute is non-volatile.		
9	Power-On-Hours (POH)	The total number of hours the drive has been powered on. This attribute is non-volatile.		
12	Device Power CycleCount	The number of full power cycles. This attribute is non-volatile.		
13	Soft Read Error Rate	The number of corrected read errors reported. This attribute is non-volatile.		
177	Percent of Drive Life Remaining	The percentage of drive life remaining. This attribute is non-volatile.		
180	Percent of Unused SpareBlocks Remaining	The number of available spare blocks.		
181	Program Fail Count	The number of flash program failures that occurred since the drive was first initialized. This attribute is non-volatile.		
182	Erase Fail Count	The number of flash erase failures that occurred since the drive was first initialized. This attribute is non-volatile.		
190	Critical Temperature	Internal SSD temperature. If the current temperature exceeds the threshold value, the drive throttles the performance.		
194	Temperature	Internal SSD temperature.		
195	ECC On-the-FlyCount	The total number of uncorrectable errors. This attribute is non-volatile.		
198	Uncorrectable SectorCount	The total number of errors the data fail correction algorithm could not correctwhen reading/writing a sector. A rise in this value indicates defects in the flash memory. This attribute is non-volatile.		
233	Number of WriteCounts	The total number of writes performed. This attribute is non-volatile.		
245	Percentage of Drive LifeUsed	The total estimated drive life used as a percentage. This attribute is non-volatile.		

5.8 Warranty

The Optimus.2 Eco SSD is designed for high performance computing environments and does not implement features to limit the performance. The Optimus.2 Eco SSD is warranted for 5 years for defects in material and workmanship and for its rated endurance specified in DWPD. The drive will make no attempt to limit application performance to meet the DWPD constraint. Configurable SMART warnings are provided to help the application designer manage drive wear-out, including the Percentage of Drive Life Used, Lifetime Remaining, and Write Amplification SMART attributes.

6.1 Part Number

6.2 Part Numbering Information

Table 19: Part Numbering Information

SanDisk Part Number	Drive Capacity	FormFactor	LBA Count
SDLKODDR-400G-5CA1	400 GBytes 9.5 mm		781,422,768
SDLKODDR-480G-5CA1	480 GBytes	9.5 mm	939,453,120
SDLKOCDR-800G-5CA1	800 GBytes	9.5 mm	1,562,824,368
SDLKOCDR-920G-5CA1	920 GBytes	9.5 mm	1,788,974,512
SDLLOCDR-016T-5CA1	1,600 GBytes 15 mm		3,125,627,568
SDLLOCDR-020T-5CA1	1,920 GBytes	15 mm	3,750,748,848

